Effect of Microwave Wi-Fi Radiation at Frequency of 2.4 GHz on Epileptic Behavior of Rats

A Mahmoudi, M B Shojaeifard, S Nematollahii, S M J Mortazavi, A R Mehdizadeh

Abstract


Background: Electromagnetic fields (EMF) with different intensities are widely used at home, offices and public places.Today, there is a growing global concern about the effects of human exposure to EMFs. Epilepsy is one of the most common chronic neurological diseases, affecting 50 million people of all ages worldwide. We aimed to investigate the effect of exposure to Wi-Fi radiation on epileptic behavior of rats.

Methods: 147 male rats, weighing 200-250 g, were divided into seven groups; negative control (no intervention), sham 1(distilled water), positive control (Pentylentetrazol [PTZ]), intervention group 1 (PTZ + Wi-Fi “off”), sham 2 (distilled water + Wi-Fi “off”), sham 3 (distilled water + Wi-Fi “on”), and intervention group 2 (PTZ + Wi-Fi “on”). The rats were exposed to Wi-Fi for 2h at a distance of 30cm from a commercial Wi-Fi router. Convulsive behaviors of rats were monitored and scored based on the intensity and type by measuring latency/threshold time, number of convulsions, sum of scores and durations of seizure, and duration of score 6 seizure. Kruskal-Wallis and Mann-Whitney U-tests were used to analyze the data.

Results: Convulsion was observed in interventions Group 4 and Group 7, and positive control. The mean number of events, and sum of scores were significantly different in intervention 2 than other two groups. However, the differences in mean threshold, mean sum of durations and “ time to show convulsion with score 6 ” were not statistically significant (P>0.05).

Conclusion: Due to limitations of our study including the sample size, these findings should be interpreted with caution.  In this study, exposure to 2.4 GHz Wi-Fi radiation showed significant beneficial effects on the epileptic behaviour of rats. More experiments are needed to verify if these exposures can be used as a therapeutic approach for amelioration of seizures in epilepsy.


Keywords


Electromagnetic Fields (EMF), Epilepsy, Seizure, Wi-Fi

Full Text:

PDF


DOI: https://doi.org/10.22086/jbpe.v0i0.900

eISSN: 2251-7200        JBPE NLM ID: 101589641

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

Indexing:  PubMed Central, Scopus, EMBASE, EBSCO, DOAJIndex CopernicusISCSIDGoogle scholar, Open J-Gate, Geneva Free Medical Journals, EMRmedexBarakatkns, Magiran, HINARI, Electronic Journals Library